Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
1.
IEEE Rev Biomed Eng ; 15: 61-84, 2022.
Статья в английский | MEDLINE | ID: covidwho-1642571

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic since early 2020. The coronavirus disease 2019 (COVID-19) has already caused more than three million deaths worldwide and affected people's physical and mental health. COVID-19 patients with mild symptoms are generally required to self-isolate and monitor for symptoms at least for 14 days in the case the disease turns towards severe complications. In this work, we overviewed the impact of COVID-19 on the patients' general health with a focus on their cardiovascular, respiratory and mental health, and investigated several existing patient monitoring systems. We addressed the limitations of these systems and proposed a wearable telehealth solution for monitoring a set of physiological parameters that are critical for COVID-19 patients such as body temperature, heart rate, heart rate variability, blood oxygen saturation, respiratory rate, blood pressure, and cough. This physiological information can be further combined to potentially estimate the lung function using artificial intelligence (AI) and sensor fusion techniques. The prototype, which includes the hardware and a smartphone app, showed promising results with performance comparable to or better than similar commercial devices, thus potentially making the proposed system an ideal wearable solution for long-term monitoring of COVID-19 patients and other chronic diseases.


Тема - темы
COVID-19 , Wearable Electronic Devices , Artificial Intelligence , Chronic Disease , Humans , Oxygen Saturation , SARS-CoV-2
2.
Comput Biol Med ; 139: 104887, 2021 12.
Статья в английский | MEDLINE | ID: covidwho-1482517

Реферат

The 2019 novel severe acute respiratory syndrome coronavirus 2-SARS-CoV2, commonly known as COVID-19, is a highly infectious disease that has endangered the health of many people around the world. COVID-19, which infects the lungs, is often diagnosed and managed using X-ray or computed tomography (CT) images. For such images, rapid and accurate classification and diagnosis can be performed using deep learning methods that are trained using existing neural network models. However, at present, there is no standardized method or uniform evaluation metric for image classification, which makes it difficult to compare the strengths and weaknesses of different neural network models. This paper used eleven well-known convolutional neural networks, including VGG-16, ResNet-18, ResNet-50, DenseNet-121, DenseNet-169, Inception-v3, Inception-v4, SqueezeNet, MobileNet, ShuffeNet, and EfficientNet-b0, to classify and distinguish COVID-19 and non-COVID-19 lung images. These eleven models were applied to different batch sizes and epoch cases, and their overall performance was compared and discussed. The results of this study can provide decision support in guiding research on processing and analyzing small medical datasets to understand which model choices can yield better outcomes in lung image classification, diagnosis, disease management and patient care.


Тема - темы
COVID-19 , Deep Learning , Humans , Lung/diagnostic imaging , Neural Networks, Computer , RNA, Viral , SARS-CoV-2
3.
Respir Res ; 22(1): 203, 2021 Jul 09.
Статья в английский | MEDLINE | ID: covidwho-1300252

Реферат

BACKGROUND: Thousands of Coronavirus Disease 2019 (COVID-19) patients have been discharged from hospitals Persistent follow-up studies are required to evaluate the prevalence of post-COVID-19 fibrosis. METHODS: This study involves 462 laboratory-confirmed patients with COVID-19 who were admitted to Shenzhen Third People's Hospital from January 11, 2020 to April 26, 2020. A total of 457 patients underwent thin-section chest CT scans during the hospitalization or after discharge to identify the pulmonary lesion. A total of 287 patients were followed up from 90 to 150 days after the onset of the disease, and lung function tests were conducted about three months after the onset. The risk factors affecting the persistence of pulmonary fibrosis were identified through regression analysis and the prediction model of the persistence of pulmonary fibrosis was established. RESULTS: Parenchymal bands, irregular interfaces, reticulation and traction bronchiectasis were the most common CT features in all COVID-19 patients. During the 0-30, 31-60, 61-90, 91-120 and > 120 days after onset, 86.87%, 74.40%, 79.56%, 68.12% and 62.03% patients developed with pulmonary fibrosis and 4.53%, 19.61%, 18.02%, 38.30% and 48.98% patients reversed pulmonary fibrosis, respectively. It was observed that Age, BMI, Fever, and Highest PCT were predictive factors for sustaining fibrosis even after 90 days from onset. A predictive model of the persistence with pulmonary fibrosis was developed based-on the Logistic Regression method with an accuracy, PPV, NPV, Sensitivity and Specificity of the model of 76%, 71%, 79%, 67%, and 82%, respectively. More than half of the COVID-19 patients revealed abnormal conditions in lung function after 90 days from onset, and the ratio of abnormal lung function did not differ on a statistically significant level between the fibrotic and non-fibrotic groups. CONCLUSIONS: Persistent pulmonary fibrosis was more likely to develop in patients with older age, higher BMI, severe/critical condition, fever, a longer viral clearance time, pre-existing disease and delayed hospitalization. Fibrosis developed in COVID-19 patients could be reversed in about a third of the patients after 120 days from onset. The pulmonary function of less than half of COVID-19 patients could turn to normal condition after three months from onset. An effective prediction model with an average area under the curve (AUC) of 0.84 was established to predict the persistence of pulmonary fibrosis in COVID-19 patients for early diagnosis.


Тема - темы
COVID-19/virology , Lung/virology , Patient Discharge , Pulmonary Fibrosis/virology , SARS-CoV-2/pathogenicity , Adolescent , Adult , COVID-19/complications , COVID-19/diagnosis , China , Female , Host-Pathogen Interactions , Humans , Lung/diagnostic imaging , Lung/physiopathology , Male , Middle Aged , Prognosis , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/physiopathology , Respiratory Function Tests , Time Factors , Tomography, X-Ray Computed , Young Adult
Критерии поиска